The site has moved to a new server, and there are now some issues to fix. Please report anything needing fixing with a comment to the homepage.

The Chess Variant Pages

[ Help | Earliest Comments | Latest Comments ]
[ List All Subjects of Discussion | Create New Subject of Discussion ]
[ List Earliest Comments Only For Pages | Games | Rated Pages | Rated Games | Subjects of Discussion ]

Single Comment

Aberg variation of Capablanca's Chess. Different setup and castling rules. (10x8, Cells: 80) [All Comments] [Add Comment or Rating]
Hans Aberg wrote on 2008-04-28 UTC
| I am not sure what 'brute force' you are referring to.


| What do you mean by 'classical theory'?

What was used before the days of computers. A better term might be 'deductive theory' as opposed to a 'statistical theory', i.e., which has the aim of finding the best by reasoning, though limited in scope due to the complexity of the problem.

| What does it matter anyway how the piece-value system for normal Chess
| was historically constructed anyway?

It is designed to merge with the other empiric reason developed to be used by humans.

You might have a look at a program like Eliza:
It does not have any true understanding, but it takes while for humans to discover that. The computer chess programs are similar in nature, but they can outdo a human by searching through many more positions. If a human is compensated for that somehow (perhaps: allowed to use computers, take back at will, or making a new variant), then I think it will not be so difficult for humans to beat the programs. In such a setting, a statistical approach will fail sorely, since the human will merely play towards special cases not covered by the statistical analysis. The deductive theory will be successively strengthened until in principle the ideal best theory will emerge. This latter approach seems to have been cut short, though by the mergence of very fast computers that can exploit the weakness of human thinking, which is the inability of making large numbers of very fast but simple computations.