## The Rose is one of the nicest pieces I have ever met

I did not invent the Rose, but I don't remember the source for this piece. If you can tell me, please Mailme.

The "Rose" is a circular Knightrider.

A Knightrider is a piece that makes a Knight move, and if it lands on an empty square it can continue with another Knight move in the same direction. For example, if you had a Knightrider on a1 on an empty 8x8 board, it could go to b3 or c5 or d7 or c2 or e3 or g4; but a Knightrider on a1 with the standard setup of pieces could not get to e3 or g4 because there would be a Pawn on c2 blocking those moves.

A Knightrider is exactly like a Rook or a Bishop except for the direction it moves, and the KnightRider is to the Knight what the Rook is to the Wazir or what the Bishop is to the Ferz.

The "Rose" is a circular Knightrider.

The Rose makes a Knight move, and if it lands on an empty square it can continue with another Knight move, but not in the same direction. Instead, at each step it must turn one-eighth of a turn.

For example, on an empty board a Rose could go from e1 to g2 and if g2 is empty continue to h4, g6, e7, c6, b4, c2, e1.

The Rose cannot display its full power on any board smaller than 13x13. Because of this, I used it in my games of Chess on a Really Big Board.

Here is an ugly ASCII diagram of the Rose's move:

```. . . . . . . . . . . . . . . .  8
. . . . . . . . . . . . . . . .  7
. . . . . . . . . . . . . . . .  6
. . . . . . . . . . . . . . . .  5
. . . . . . . . . . . . . . . .  4
. . . . . 2 . . . . . . . . . .  3
. . . 3 . . . 1 . . . . . . . .  2
. . . . . . . . . . . . . . . .  1
. . 4 . . . . . O . . . . . . .  8
. . . . . . . . . . . . . . . .  7
. . . 5 . . . 7 . . . . . . . .  6
. . . . . 6 . . . . . . . . . .  5
. . . . . . . . . . . . . . . .  4
. . . . . . . . . . . . . . . .  3
. . . . . . . . . . . . . . . .  2
. . . . . . . . . . . . . . . .  1

a b c d e f g h a b c d e f g h

. . . . . . . . . . . . . . . .  8
. . . . . . . . . . . . . . . .  7
. . . . . . . . x . . . . . . .  6
. . . . . . x . . . x . . . . .  5
. . . . x . . . x . . . x . . .  4
. . . . . x . . . . . x . . . .  3
. . . x . . . x . x . . . x . .  2
. . . . . . x . . . x . . . . .  1
. . x . x . . . O . . . x . x .  8
. . . . . . x . . . x . . . . .  7
. . . x . . . x . x . . . x . .  6
. . . . . x . . . . . x . . . .  5
. . . . x . . . x . . . x . . .  4
. . . . . . x . . . x . . . . .  3
. . . . . . . . x . . . . . . .  2
. . . . . . . . . . . . . . . .  1

a b c d e f g h a b c d e f g h
```
The second diagram shows all the possible moves, but it does not show the lines connecting the moves. The first diagram shows one circular move, and if you draw all the circles, you get a picture with 8 circles intersecting at one point, and it looks like this 4000 byte picture.

Also in the second diagram, you should remember that the Rose doesn't jump directly to all those squares, but needs several steps to get to the outer squares. Its path there can be blocked, but of course it also attacks each square in two directions so that it can pin four pieces at the same time.

### Funny Notation for Circular Riders

The "funny notation" gets creakier and creakier as we push its limits. I didn't want to have ugly punctuation or brackets, but now I must.

The lower case 'q' will be the modifier for circular riders, because 'o' is already used for cylindrical and 'c' for capture.

qN is the Rose, but the qK could also be written q[WF]q[FW]. (The qK could start with an F move or with a W move.)

A forty-five degree turn is natural for the Rose. so we just write qN. I suppose "q90N" would be a Rose that makes a ninety-degree turn.

As one example of its move, the circular King, qK, could go from e1 to f1 and if f1 is empty could continue in the same move to g2, and so on to g3, f4, e4, d3, d2, e1.

Here is an ugly ASCII diagram of the qK's move:

```. . . . . . . . . . . . . . . .  8
. . . . . . . . . . . . . . . .  7
. . . . . . . . . . . . . . . .  6
. . . . . . . . . . . . . . . .  5
. . . . . . . . . . . . . . . .  4
. . . . . . . . . . . . . . . .  3
. . . . . . . . 4 3 . . . . . .  2
. . . . . . . 5 . . 2 . . . . .  1
. . . . . . . 6 . . 1 . . . . .  8
. . . . . . . . 7 K . . . . . .  7
. . . . . . . . . . . . . . . .  6
. . . . . . . . . . . . . . . .  5
. . . . . . . . . . . . . . . .  4
. . . . . . . . . . . . . . . .  3
. . . . . . . . . . . . . . . .  2
. . . . . . . . . . . . . . . .  1

a b c d e f g h a b c d e f g h

. . . . . . . . . . . . . . . .  8
. . . . . . . . . . . . . . . .  7
. . . . . . . . . . . . . . . .  6
. . . . . . . . . . . . . . . .  5
. . . . . . . . . . . . . . . .  4
. . . . . . . . . . . . . . . .  3
. . . . . . . . x x x . . . . .  2
. . . . . . . x x . x x . . . .  1
. . . . . . x x x x x x x . . .  8
. . . . . . x . x K x . x . . .  7
. . . . . . x x x x x x x . . .  6
. . . . . . . x x . x x . . . .  5
. . . . . . . . x x x . . . . .  4
. . . . . . . . . . . . . . . .  3
. . . . . . . . . . . . . . . .  2
. . . . . . . . . . . . . . . .  1

a b c d e f g h a b c d e f g h
```
I think that circular pieces should be permitted to use the null-move, that is, to go around the circle and stop where they started.

## Other Ideas for Circular Riders

Don't forget the three-dimensional version of this piece...
A q22N would go straight two squares, then turn one step, straight two, turn, and so on.

Here is a spiral W-rider that moves 4, turns, moves 3, turns, moves 2, turns, moves 1:

```. . . . . . . . . . . . . . . .  8
. . . . . . . . . . . . . . . .  7
. . . . . . . . . . . . . . . .  6
. . . . . . . . . . . . . . . .  5
. . . . . . . . . . . . . . . .  4
. . . . . . . . . . . . . . . .  3
. . . . . . . . 8 6 5 4 . . . .  2
. . . . . . . . 9 . . 3 . . . .  1
. . . . . . . .1011 . 2 . . . .  8
. . . . . . . . . . . 1 . . . .  7
. . . . . . . . . . . W . . . .  6
. . . . . . . . . . . . . . . .  5
. . . . . . . . . . . . . . . .  4
. . . . . . . . . . . . . . . .  3
. . . . . . . . . . . . . . . .  2
. . . . . . . . . . . . . . . .  1

a b c d e f g h a b c d e f g h
```
And a spiral piece that goes W 3 times and D 3 times and H 3 times and (0,4) 3 times would look like this:
```. . . . . . . . . . . . . . . .  8
. . . . . . . . . . . . . . . .  7
. . . . . . . . . . . . . . . .  6
. . . . . . . . . . . . . . . .  5
. . . . . . . . . . . . . . . .  4
. . . . . . . . . . . . . . . .  3
. . . . . .10 6 . 5 9 . . . . .  2
. . . . . . . 2 1 . . . . . . .  1
. . . . . . . 3 R 4 . . . . . .  8
. . . . . . . 7 . . 8 . . . . .  7
. . . . . .11 . . .12 . . . . .  6
. . . . . . . . . . . . . . . .  5
. . . . . . . . . . . . . . . .  4
. . . . . . . . . . . . . . . .  3
. . . . . . . . . . . . . . . .  2
. . . . . . . . . . . . . . . .  1

a b c d e f g h a b c d e f g h
[Diagram corrected by Alfred Pfeiffer, Dec 2002.]
```
Imagine a clockwise Rose. Because paths intersect, it would still get to the same places just as fast, and it could still give double check all by itself. I think this piece would be too confusing.

Imagine a Rose that had to start its move by going forwards. In order to retreat, it would have to take at least 3 steps around a circle, and if it ever stopped moving on the last rank it would have no legal moves.

A q[DFWA], surprisingly enough, really does make a circle:

```. . . . . . . . . . . . . . . .  8
. . . . . . . . . . . . . . . .  7
. . . . . . . . . . . . . . . .  6
. . . . . . . . . . . . . . . .  5
. . . . . . . . . . . . . . . .  4
. . . . . . . . . . . . . . . .  3
. . . . . . . . . . . . . . . .  2
. . . . . . . . 3 2 . . . . . .  1
. . . . . . . . . . 1 . . . . .  8
. . . . . . 4 . . . . . . . . .  7
. . . . . . . . . . D . . . . .  6
. . . . . . 5 . . . . . . . . .  5
. . . . . . . 6 7 . . . . . . .  4
. . . . . . . . . . . . . . . .  3
. . . . . . . . . . . . . . . .  2
. . . . . . . . . . . . . . . .  1

a b c d e f g h a b c d e f g h
```
What if there are 3 powers in ther list? Let's try a q[WFN]:
```. . . . . . . . . . . . . . . .  8
. . . . . . . . . . . . . . . .  7
. . . . . . . . . . . . . . . .  6
. . . . . . . . . . . . . . . .  5
. . . . . . . . . . . . . . . .  4
. . . . . . . . . . . . . . . .  3
. . . . . . . . . . . . . . . .  2
. . . . . . . . . . . . . . . .  1
. . . . . . . . . 2 . . . . . .  8
. . . . . . . 3 . . 1 . . . . .  7
. . . . . . . 4 . . W . . . . .  6
. . . . . . . . 5 . . . . . . .  5
. . . . . . . . . . . . . . . .  4
. . . . . . . . . . . . . . . .  3
. . . . . . . . . . . . . . . .  2
. . . . . . . . . . . . . . . .  1

a b c d e f g h a b c d e f g h
```
The fact that a q[WFN] makes a circle is pretty surprising. Perhaps a q[HDW] is broken? No, instead it loops around and reaches home on the 12th step. I won't give its diagram because it looks like an evil symbol.

It seems that every possible circular piece eventually returns to its home square after running around for awhile. However, most of these odd possibilities would not be interesting to use in actual games, and those that might be used are suitable only for large chessboards.

## Other Kinds of Crookedness

There is an obvious affinity between the idea of the Rose and that of the Crooked Bishop. For example, the first two steps taken by a crooked Knightrider and a circular Knightrider would be the same (for example, from e1 to e5 using either f3 or d3 as the empty square passed over).

Although I can't quite say what path a qzB (circular crooked Bishop) would follow on the board, it was this idea that made me think of a sort of Knightrider that would go from e1 to d3 to e5 to f7 to e9: like a crooked Knightrider, but going left, then right, then left.

This sort of Crooked Bishop would go from d1 to c2 to d3 to e4 to d5 to to c6 to d7 to e8. This is interesting because its value is exactly the same as that of the "normal" Crooked Bishop, but it is a different piece.

Imagine a crooked Rose going from e1 to c2 to b4 to c6 to e7 to g8 to a2.h2 to a2.g4 to a2.e5 to a2.c6 and so on, a huge S-curve that requires a really big board to express itself, so much so that a 16x16 board would feel too small for this piece.

This is a crooked circular piece that makes half a circle, turns, half-circle, and so on. In fact, this description also applies to the move of the sort of crooked Bishop that goes from d1 to c2-d3-e4-d5-c6 and so on; therefore, it seems that a crooked circular piece is well-defined!

Here is a diagram for a zq[WF]:

```. . . . . . . .21 20. . . . . .  8
. . . . . . . . . .19 . . . . .  7
. . . . . . . . . .18 . . . . .  6
. . . . . . . .16 17. . . . . .  5
. . . . . . .15 . . . . . . . .  4
. . . . . . .14 . . . . . . . .  3
. . . . . . . .13 12. . . . . .  2
. . . . . . . . . .11 . . . . .  1
. . . . . . . . . .10 . . . . .  8
. . . . . . . . 8 9 . . . . . .  7
. . . . . . . 7 . . . . . . . .  6
. . . . . . . 6 . . . . . . . .  5
. . . . . . . . 5 4 . . . . . .  4
. . . . . . . . . . 3 . . . . .  3
. . . . . . . . . . 2 . . . . .  2
. . . . . . . . K 1 . . . . . .  1

a b c d e f g h a b c d e f g h
```
As you can see, it needs some space beside it so that it can go forwards. If it is a zq[WF] and not also a zq[FW], it cannot go from a1 to b2 in one move, its coverage of the board is not too dreadful, and its value is probably somewhere near that of the Queen (or perhaps even less than a Q in a crowded position).

The combination of WF and FW, the zqK, would be a frightening piece.

The zq[WF] or the zq[FW] can be used on an 8x8 board, where they are handicapped by the size of the board. They should feel quite comfortable on a board that is 16x16 or larger. If they start the game in or near the corner, they will be cramped.

Last of all, I should say that a q[fbN] on e4 would go from f6 to g4 to f2 to e4, while an fbqN (or "fb[qN]") would make these two circles:
```. . . . . . . . . . . . . . . .  8
. . . . . . . . . . . . . . . .  7
. . . . . . . . . . . . . . . .  6
. . . . . . . . . . . . . . . .  5
. . . . . . . . . . . . . . . .  4
. . . . . x . . . . . x . . . .  3
. . . x . . . x . x . . . x . .  2
. . . . . . . . . . . . . . . .  1
. . x . . . . . N . . . . . x .  8
. . . . . . . . . . . . . . . .  7
. . . x . . . x . x . . . x . .  6
. . . . . x . . . . . x . . . .  5
. . . . . . . . . . . . . . . .  4
. . . . . . . . . . . . . . . .  3
. . . . . . . . . . . . . . . .  2
. . . . . . . . . . . . . . . .  1

a b c d e f g h a b c d e f g h
```

#### Other Links In these Pages

This is a Mailme.