# A Circe Chess problem - 2

Stefanos Pantazis, editor of The US Problem Bulletin, has sent me two problems that appeared in that journal and did win a prize there.

This is the second problem: You can also look at the first problem: a series selfmate in 17 moves.

This problem was composed by Michel Caillaud, was published in the US Problem Bulletin in 1994, and won a First Prize.

White:
King c8; Bishop d4; Pawn b4, d7, e5, e7, f4, f7, h4, h7.

Black:
King a3; Rook f6, f8; Knight e8, g7; Bishop h8; Pawn b2, d2, e6, f5, h5.

Circe. h=4: Helpstalemate in four moves.

(b) Move the black king from a3 to a4, and solve the problem again.

## Explanation

Circe is, as Stefanos Pantazis wrote me, probably the most popular fairy condition among problemists; Circe Chess is also occasionally played as a game between two players, but not too often. In Circe a unit that is captured is immediately reborn on its array square: the square where it stood on the opening setup. A rook, bishop, or knight is reborn on a square of the same colour as the square on which it was captured; a pawn on a square (in the 2nd or 7th rank) in the same file on which it was taken. When the square is occupied, the piece disappears.

A helpstalemate in four moves means: black moves first, and helps white to get himself stalemated. So, what you should find is one series of eight moves, starting with a black move, then a white move, etc., ending with a white move that gives stalemate to black: black cannot move from the resulted position, and is not in check. Note that black and white actually cooperate to get black stalemated.

The problem consists actually of two parts: the problem as stated, and the problem where the black king is moved from a3 to a4. For this second position, the same condition again holds: give a sequence of 4 turns, starting with black, and ending with white stalemating black.

## A cook?

The problem couldn't be computer tested, and the possibility of a cook (additional solution, shorter solution, ...) cannot be ruled out completely, but seems not too likely. Any reader finding such a cook is requested to contact me.

Written by Hans Bodlaender; with thanks to Stefanos Pantazis.